If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+12x=8
We move all terms to the left:
4x^2+12x-(8)=0
a = 4; b = 12; c = -8;
Δ = b2-4ac
Δ = 122-4·4·(-8)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{17}}{2*4}=\frac{-12-4\sqrt{17}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{17}}{2*4}=\frac{-12+4\sqrt{17}}{8} $
| z-21=0.07 | | a+6=2a+2 | | 18m=-4(-5m-16 | | 70=-10(y-99) | | 8x2+4x+6=0 | | 7x/4-3=18-7x/2 | | a+6=1a+2 | | 81=21+6t | | 50x+11040-120x=8280 | | 30=9+2x+x | | 5+2x+3=24 | | 4(x+2)+5x+3=2(x-3)+5x-7 | | 1/7x=5x=35 | | -16u+4=-2u-8(2u-3) | | 36+u=6)7-u)+u | | 2-16x=7(3x+2) | | 31=5h+28 | | 3x+5x+3x=138 | | 4+2x=5+1x | | Y=(13)11x+12 | | 31=h5+28 | | -19-20q-19q=20+6(-10q+18) | | 4(y-2)=2(2y+36) | | 4+9d=7d | | 5-9y-3=83 | | 8t+20=60 | | 8(1+5n)=-144 | | 1/26x-10=-4x+30 | | 3(x-3)+6=5x-2 | | 12=7+5x | | -x=18x=-18 | | Y=(7)11x+12 |